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Quantum Structures Do Not Exist in Reality

LaÂszloÂE. SzaboÂ1

Received July 4, 1997

It is argued that quantum logic and quantum probability theory are fascinating
mathematical theories but without any relevance to our real world.

1. INTRODUCTION

If quantum probability theory takes its name seriously, then it must

include at least two components: (!, p). ! is an algebraic structure, such

that the following representation is provided:

EVENTS

ELEMENTS Û (e.g., beeps of a detector,

pointer positions, etc.)

OPERATIONS Û 5
JOINT OCCURRENCE

ALTERNATIVE OCCURRENCE

NONOCCURRENCE

p is a function, p: ! ® [0, 1], satisfying some elementary conditions, and

the value of which must be close to the observed relative frequencies.

The story of quantum probability and quantum logic begins with von

Neumann’ s (Birkoff and Neumann 1936) recognition that quantum mechanics

can be regarded as a kind of probability theory defined over the subspace
lattice L (H ) of a Hilbert space H. This recognition was confirmed by the

Gleason theorem:

Definition 1. A nonnegative real function m on L (H ) is called a probabil-
ity measure if m (H ) 5 1 and if, whenever E1, E2, . . . are pairwise orthogonal

subspaces and E 5 Ú `
i 5 1Ei, then m (E ) 5 ( `

i 5 1 m (Ei).
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Theorem 1 (Gleason, 1957). If H is a real or complex Hilbert space of

dimension greater than 2, and m is a probability measure on L (H ), then there

exists a density operator W on H such that ( " E P L (H )) [ m (E ) 5 tr(WE )].2

Formally, the closed linear union and the intersection of subspaces play

the role of disjunction and conjunction of events in this probability theory.

That is, for example, a conjunction A Ù B, represented by the intersection

of the corresponding subspaces A ù B, corresponds to an event which is

nothing else but the joint occurrence of events A and B.
This is, however, only a mathematical abstraction and, as we will see

soon, the above interpretation is untenable.

2. NONSENSICAL ª PROBABILITIESº

Consider the example shown in Fig. 1. Let E1 and E2 be one-dimensional
subspaces of a two-dimensional Hilbert space H 2. C is the state vector of

the system. In this state, the corresponding probabilities are the following:

p (E1) 5 ^ C , E1 C & 5 1

p (E2) 5 ^ C , E2 C & 5 0.6 ( . 0!)

p (e1 Ù E2) 5 ^ C , (E1 Ù E2 C ) & 5 0

The strange meaning of this result is obvious: if E1 happens with certainty,
how can E2 occur without E1? Consequently.

Fig. 1. A simple two-dimensional example for nonsensical probabilities.

2 The subspaces, the corresponding projectors, and the corresponding events are denoted by
the same letter.
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1. L (H ) can hardly play the role of an ª algebra of eventsº for a

probability theory.

2. The number tr(WE ) cannot be interpreted as the ª relative frequencyº
of an event.

3. DO WE REALLY NEED A NONCLASSICAL PROBABILITY
THEORY?

Until we restrict ourselves to one set of commuting observables, quantum

probabilities can be represented in one Kolmogorovian probability space.

However, we can see in many often-quoted examples, such as the double-
slit experiment, the EPR experiment, etc., that quantum mechanics produces

different Kolmogorovian probability measures belonging to different incom-

patible conditions.3 The alleged impossibility to put these classical probability

measures together into one common Kohnogorovian probability model is

behind the cry for quantum probability theory and quantum logic. The princi-

pal point of my claim is that we can join these probability measures, if we
do it in a correct way!

Before seeing how can we do that, let us consider how this procedure

goes in the classical theory of probability.

3.1. How to Unify Classical Probability Models?

Let me take a simple example. We toss a coin which has a little magnetic

momentum (Fig. 2). If the magnetic field is off, the probabilities are

poff(H) 5 0.5

poff(T) 5 0.5

Fig. 2. The probabilities of Heads (H) and Tails (T) are different if the magnetic field is on.

3 For a detailed analysis of these examples see SzaboÂ(1995a, b, 1996).
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If the magnetic field is on, the probabilities are different:

pon(H) 5 0.2

pon(T) 5 0.8

The event algebra ! is shown in Fig. 3. Probability models (!, poff)

and (!, pon) are, separately, Kolmogorovi an. For example, they satisfy some

elementary Bell-type inequalities (Pitowsky, 1989):

poff(H) 1 poff(T) 2 poff(H Ù T) # 1 (1)

and separately,

pon(H ) 1 pon(T ) 2 pon(H Ù T ) # 1 (2)

Now, if we make the same mistake as we do so often in quantum mechanics,

and put these probabilities, belonging to different conditions, together into

one formula prescribed for a Kolmogorovian probability theory, we find the

same kind of ª violation of the rules of classical probability theoryº :

poff(H) 1 pon(T)) 2 poff(H Ù T ) 5 0.5 1 0.8 . 1 (3)

or

pon(H) 1 poff(T ) 5 0.2 1 0.5 Þ 1 5 poff(1) 5 poff(H Ú T ) (4)

Consider now how to join probability models (!, poff) and (!, pon). In

the classical probability theory we can join probabilities belonging to separate

conditions only by enlarging the event algebra in such a way that it contains

not only the original events, but the ª conditioning eventsº too (Fig. 4).4 Of
course, we can do that only if we know the probabilities of the conditioning

Fig. 3. Algebra of events !.

4 I am grateful to Miltos Zissis for his warning that Fig. 4 was incorrect in a previous version
of this paper.
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Fig. 4. The unified algebra of events !8.

events. In the example in question assume that p (OFF) 5 0.5 and p (ON) 5
0.5. So, the unified probability model is (!8, p), where

p (1) 5 p (2) 5 p (9) 5 p (10) 5 0.25

p (3) 5 p (8) 5 0.1

p (4) 5 p (7) 5 0.4

p (OFF) 5 p (ON) 5 0.5 (5)

p (H) 5 p (6) 5 0.35

p (T) 5 p (5) 5 0.65

The original probabilities are represented as conditional probabilities (defined

by the Bayes law):

pon(H) 5
p (H Ù ON)

p (ON)
5

p (3)

p (ON)
5

0.1

0.5
5 0.2

pon(T) 5
p (T Ù ON)

p (ON)
5

p (4)

p (ON)
5

0.4

0.5
5 0.8

poff(H) 5
p (H Ù OFF)

p (OFF)
5

p (1)

p (OFF)
5

0.25

0.5
5 0.5 (6)

poff(T) 5
p (T Ù OFF)

p (OFF)
5

p (2)

p (OFF)
5

0.25

0.5
5 0.5
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3.2. How to Join Probability Distributions in Quantum Theory?

Consider a quantum system described in Hilbert space H. The state of

the system is represented by density operator W. Assume that there are N
different measurements m1, m2, . . . , MN one can carry out on the system.

The corresponding observable-operators are denoted by MÃ
1, MÃ

2, . . . , MÃ
N.

Let }1, }2, . . . , }N be the spectra of these operators. Introduce the following
notation: each set of measurements {m i 1, . . . mis{ will be identified with a

vector h P {0, 1}n, such that

h i 5 H 1 if mi P {m11, . . . m is}

0 if mi ¸ {m21, . . . mis}

In this way the conditioning events can be represented in 2{0,1}N
. For instance,

event ª measurement mi is performedº is represented by { h | h i 5 1} , {0, 1}N,

event ª measurement m i and measurement m j are performedº corresponds to

{ h | h i 5 1} ù { h | h j 5 1}

etc.

Some of these measurements can be incompatible, in the sense that they

cannot be simultaneously carried out. Assume that, according to the quantum

theory, observables belonging to one set of compatible measurements com-

mute. For each set {m i1, mi2, . . . m is} 5 {m i} h i 5 1 of compatible measurements
the quantum state W determines a Kolmogorovian probability measure over

the corresponding Borel sets, (B ( 3 h i 5 1 }i), m h ), where

m h : (Ai) h i 5 1 P B 1 3
h i 5 1

}i 2 j tr 1 W &
h i 5 1

Ai 2 (7)

Now, how can we join these classical probability spaces into one common

classical probability model? The method is known from the classical theory

of probability. Quantum mechanics has nothing special from this point of

view! That is, we need to enlarge the event algebra by the conditioning events
and to define the joint probability measure over this larger algebra of events.

In order to do that, we need to know the probabilities of conditioning events.

The values of these probabilities are the matter of empirical facts, although

the following assumption seems to be quite plausible:

Stipulation. There is a classical probability measure pÄ on 2{0,1}N
such

that if pÄ ({ h }) Þ 0, then the corresponding set of operators {M i} h i 5 1 is

commuting.

Thus, my assertion is that classical probabilities (7) can be joined into

one Kolmogorovian probability model:
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Theorem 2. There exists a Kolmogorovian probability space (}, B (}),

p) such that each conditioning event E P 2{0,1}N
and each outcome event

(Ai) h i 5 1 can be represented by an element of B (}), denoted by XE and
X(Ai) h i 5 1, respectively, and

p(E ) 5 p (XE), " E P 2{0,1}N

m h ((A i) h i 5 1) 5 tr 1 W &
h i 5 1

Ai 2
5

p(X (Ai) h i 5 1 ù X{ h })

p (X{ h })
, " h P {0, 1}N, " (A i) h i 5 1 P 3

h i 5 1
}i

For the proof of this statement and for further details see SzaboÂ(1996).

4. CONCLUSIONS

Like it or not, quantum mechanics is connected with the empirical facts

about the world, to which it is supposed to be applied, through relative
frequencies. But those ª probabilitiesº that are presented by the quantum

probability theory can hardly be interpreted as relative frequencies of events.

And whether we like it or not, quantum logic is nothing else but an algebraic

structure isomorphic with the algebra of events underlying the quantum

probability theory. So, if quantum probability theory has nothing to do with

reality, then quantum logic is meaningless, too. Moreover, we have seen that
the main motivation of quantum probability theory is groundless: it is based

on the complaint that probability measures belonging to different set of

conditions cannot be unified into one common Kolmogorovian probability

model. But the manner in which this unification is imagined is mistaken. In

this way one could run into contradictions even in the classical probability

theory. Finally, it can be proved that such a unification of ª incompatibleº
probability measures, if it is understood correctly, is entirely possible in

quantum mechanics.
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